Abstract No. liu189

Electronic and Chemical Properties of  $Ce_{0.8}Zr_{0.2}O_2(111)$  Surfaces: Photoemission, XANES, Density-Functional, and  $NO_2$  Adsorption Studies

G. Liu, J.A. Rodriguez, J. Hrbek, J. Dvorak, and C.H.F. Peden (Pacific Northwest National Laboratory) Beamline(s): U7A

**Introduction**: Zirconia-doped ceria ( $Ce_{1-x}Zr_xO_2$ ) is a complex material and an important component of catalysts used in automotive exhaust gas converters [1]. The exact role of pure and Zr-doped ceria to reduce the emission of toxic pollutants such as nitrogen oxides  $NO_x$  ( $NO_2$ ,  $NO_2$ ,  $NO_3$ ) in automobile catalytic converters is not clear [2]. Understanding the details of  $NO_x$  chemistry on  $Ce_{1-x}Zr_xO_2$  surfaces has both practical and academic interests.

**Methods and Materials**:  $CeO_2(111)$  and  $Ce_{1-x}Zr_xO_2(111)$  epitaxial thin films (500-700 Å in thickness) were grown onto a Y-stabilized  $ZrO_2(111)$  surface by oxygen-plasma-assisted molecular beam epitaxy. The Y-stabilized  $ZrO_2$  substrate (YSZ) contained ~14 atomic % Y. The oxide films were characterized by X-ray diffraction (XRD), reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) and X-ray photoemission (XPS). For  $Ce_{1-x}Zr_xO_2$  mixed-metal oxide systems with compositions of x=0.1, 0.2, and 0.3, the Zr ions substitutionally replace Ce ions within the cubic fluorite lattice structure of  $CeO_2$ . Synchrotron-based high-resolution photoemission, XPS, X-ray absorption near-edge spectroscopy (XANES), and first-principle density-functional calculations were used to study the electronic properties. The chemical properties were examined with  $NO_2$  adsorption.

**Results**: O *K*-edge of XANES and Ce 3d XPS data demonstrate zirconia doping into ceria induces structural and electronic modifications, which are related to the presence of  $Ce^{3+}$  cations and oxygen vacancy intrinsic defects. At 300 K, although  $NO_2$  gas dosing on the reduced  $Ce_{0.8}Zr_{0.2}O_2$  surface leads to chemisorbed  $NO_2$  as a dominant species without  $NO_3$  formation, depopulation of  $Ce^{3+}$  to  $Ce^{4+}$  cations was observed. Atomic nitrogen on the reduced surface was detected as a minor product by full decomposition of a fraction of  $NO_2$ . By annealing up to 800 K,  $NO_2$  desorbed with atomic N species left on the surface. In the case of low  $NO_2$  exposures at 100 K onto the  $Ce_{0.8}Zr_{0.2}O_2$  surface, chemisorbed  $NO_2$  is still the main species.  $NO_2$  starts to desorb at 150 K and remains relatively stable between 200-500 K. On the reduced  $CeO_{2-x}$  surface with  $NO_2$  multilayer adsorption at 100 K, the main product of  $NO_2$  reaction is adsorbed  $NO_3$  at annealing up to 200 K, with  $NO_2$  as a major coexisting species on the surface. The nitrate species was desorbed at 500 K. Either thermal annealing at 800 K or  $NO_2$  exposure at 100 K can partially re-oxidize  $CeO_{2-x}$ . On the  $NO_2$  homeometric surface with minor  $NO_2$  exposure at 100 K can partially re-oxidize  $NO_2$  was the main species for  $NO_2$  exposure at 300 K. In addition, oxidation of  $NO_2$  and  $NO_2$  surface chemistry of ceria catalysts, and the presence and extent of  $NO_2$  oxides considerably modifies  $NO_2$  surface chemistry of ceria catalysts, and the presence and extent of  $NO_2$  in and oxygen vacancies still play a very important role.

**Acknowledgments**: This work was supported by the U.S. Department of Energy under Contract DE-AC02-98CH10086. National Synchrotron Light Source (NSLS) is supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH00016.

## References:

[1]. E. S. Lox, B. H. Engler, "Handbook of Heterogeneous Catalysis," G. Ertl, H, Knözinger, J. Weitkamp, Eds.; Wiley-VCH: Weinheim, Germany, 1997, pp 1559-1668.

[2]. K. C. Taylor, "Automobile Catalytic Converters," In *Catalysis-Science and Technology*; J. R. Anderson, M. Boudart, M. Eds.; Springer-Verlag: Berlin, Vol.5, 1984.